KERTTU SAALASTI INSTITUTE UNIVERSITY OF OULU

Science With Arctic Attitude

Design for Metal Additive Manufacturing

24.11.2021 Kari Mäntyjärvi

PROJECT «FROM IDEA TO PRINTING OF METAL PRODUCTS» ARCTIC PLATFORM FOR METAL ADDITIVE MANUFACTURING

PROJECT INFORMATION, REPORTS, EVENTS, NETWORK MEMBERS AND SAMPLES OF METAL 3D-PRINTING CAN BE FOUND ON OUR SITE: i2metprint.com

FMT

From Idea to Printing of Metal Products I2P – Project

Project ID: KO4012

REGIONAL COUNCIL OF LAPLAND

University of Oulu

FMT

Contents:

- 1. "No AM method is an island"
- 2. DFAM 90 second walkthrough
- Design for PBF-LB/M
 120 second walkthrough
- 4. Design for metal AM (DED)
- 5. Conclusions

"No AM method is an island"

*) A variation on John Donne's famous phrase 'No man is an island'.

"No AM method is an island"

- AM methods are one group of many manufacturing methods
- AM printed parts are always associated with a work steps includes different manufacturing techniques.
- Very rarely is an AM printed part ready for use straight from the printer.

The rule of thumb

- If a part can be manufactured cost efficiently using a conventional manufacturing methods, it should probably not be produced using AM.
- Good parts for AM tend to have:
- complex geometries,
- custom geometries,
- low production volumes,
- special combinations of properties or characteristics,
- or some combination of these characteristics.

FIGURE 24 INSTALLED BASE BY TECHNOLOGY 2019 AND SUPPLIER VS. BUYER FORECAST 2024 [UNITS]

The most ሮማ common and mature metal AM methods

Deposition

Ise

V£

Filament Form

Binder Jetting

Pellet FDM

Metal AM Maturity Index 2021

► FMT

SFS-EN ISO/ASTM 52910:2019

Additive manufacturing. Design. Requirements, guidelines and recommendations (ISO/ASTM 52910:2018)

Design for Additive Manufacturing

90 second walkthrough!

Focus on the bold in bold in bold in the b

SFS-EN ISO/ASTM 52910:2019

Additive manufacturing. Design. Requirements, guidelines and recommendations (ISO/ASTM 52910:2018)

Here is a general AM design process that can be used by all AM methods.

STEP 3 Design loop

FMT

►I FMT

University of Oulu

PBF-LB Characteristics

$\tilde{\heartsuit}$

Characteristics of laser powder bed fusion (PBF-LB) processes

- General
- Size of the parts
- Benefits to be considered in regard to the PBF process
- Limitations to be considered in regard to the PBF process
- Economic and time efficiency
- Feature *constraints* (stair-step effect, islands, overhang)

$\overleftarrow{\mathbb{C}}$

General

- Laser power from 200W to 1 KW and more
- One or more simultaneous laser beams in use
- Printing is done on a platform and the supporting structures are made of the same material as the printed part

Size of the parts

- Main limitation is the working area of the PBF-LB printer
 - Most common size category ca. 280x280x350 mm³
 - Larger chamber sizes are on the way
- The size and volume of the part have a direct relation to cost of production

$\overset{}{\textcircled{}}$

Benefits

- Near-net shape method
- High degree of *design freedom*
- Complex geometries can be produced

FMT

$\overleftarrow{\mathbb{C}}$

Benefits

- Multiple functions in the same part
- "Complexity for free." Complex geometry does not increase the cost of the part
- "Consolidation." Assembly or multiple parts in the same part

Original assembly, 33 parts.

New AM part. Combined and functionally developed.

Source: 3DStep https://www.3dstep.fi/asiakastarinoita/hydrauliblokin-optimointi-avant-tecno Picture left: https://images.squarespace-cdn.com/content/v1/60ac8c718fa9774e3688baa4/1623919552821-HWSO1NWSSM3D5X55LCY4/IMG_20190909_092220-768x576.jpeg Picture right: https://images.squarespace-cdn.com/content/v1/60ac8c718fa9774e3688baa4/1623919529108-17146F5TS6TQGFL186K4/IMG_20190909_092244.jpeg

University of Oulu

Limitations

Anisotropy

- **Deviations or inaccuracy** in form, dimensions and positional tolerances of parts
- Possibilities for shrinkage, residual stress and deformation

FMT

Economic and time efficiency

 Height (Z-direction) has the greatest impact on building time and build costs

FMT

Economic and time efficiency

- *Minimising weight* reduces printing time and costs
- *Tight nesting.* To minimize costs, build space should be used as efficiently as possible

Feature constraints - stair-step effect

- Geometric inaccuracy
- Depends on layer thickness

Source: SFS-EN ISO/ASTM 52911-1:2019 (Original source VDI 3405-3:2015)

University of Oulu

Feature constraints - Islands

Key

1/

FMT

islands Ι Р part

Source: SFS-EN ISO/ASTM 52911-1:2019 (Original source VDI 3405-3:2015)

Feature constraints - Overhang

FMT

Source: SFS-EN ISO/ASTM 52911-1:2019 (Original source VDI 3405-3:2015)

- Support is needed
- Small (a<2mm) overhangs do not need support
- **Poor surface quality** in the overhang area

PBF-LB/M Design guidelines

$\tilde{\mathbf{w}}$

Design guidelines for laser-based powder bed fusion of metals (PBF-LB/M)

- Materials
- Support structures
- Build orientation, positioning and arrangement
- Design considerations

FMT

$\overleftarrow{\mathbb{C}}$

Materials

- Most commonly used materials:
 - Stainless steel AISI 316L
 - Aluminium AISi10Mg
 - Tool steel 1.2083
 - Titanium TiAl6V4
 - Nickel-based IN625
 - Cobalt-based CoCr

$\ddot{\mathbf{v}}$

Materials - microstructure

- Heavily dependent on the processing environment
- May contain porous and defects
- Post *heat treatments* can be used for *release of residual stresses* and tuning material properties

$\ddot{\mathbf{v}}$

Support structures – WHY?

- *Fixing* the part to the build platform
- Heat transfer
- As a provisional *support for a part* under construction
- Compensating for warping caused by residual stress

FMT

Source: https://www.autodesk.com/products/netfabb

Support structures - Fixing the part to the build platform

Support structures – vertical hole

∖ /∕ FMT

Build orientation, positioning and arrangement

Source: SFS-EN ISO/ASTM 52911-1:2019 (Original source VDI 3405-3:2015)

FMT

Table 3 Arrangement of critical elements in the build space of the machine

SOURCE: VDI 3405-3:2015.

Support structures design

Source: SFS-EN ISO/ASTM 52911-1:2019 (Original source VDI 3405-3:2015)

Table 4 Examples of support structures

∖∣∕ FMT

PBF-LB/M design considerations

FMT

Surface roughness

$\overleftarrow{\mathbb{C}}$

Cavities

- Design with loading in mind
- Reduce mass and build time
- Hollow, powder inside or filled with mesh or bionic structures

FMT

Maximum length-toheight ratio 8:1

Holes

- Minimum diameter 0.4 mm
- Maximum diameter with no support 10 mm
- "Fear no tears"

$\ddot{\heartsuit}$

Also

- Design for functionality
- Lightweight
- Design parts to be multifunctional
- Topological optimization
- Design for ease of fabrication

SFS-EN ISO/ASTM 52911-1:2019:en Examples

FMT

SFS-EN ISO/ASTM 52911-1:2019:en Examples

Source: SFS-EN ISO/ASTM 52911-1:2019 (provided by CETIM — Technical Centre for Mechanical Industry)

Integral design example

- From welded construction to AM construction
- Part reduction from 6 to 1
- Mass reduction 40%

a) Original welded assembly

b) Modified result design by topological optimization and produced by PBF-LB/M

SFS-EN ISO/ASTM 52911-1:2019:en Examples

Ŵ

FMT

Topological optimization example

- Initial parameters
- Topology optimization
- Redesign for PBF-LB/M

a) Initial shape, after topological optimization

Key

- 1 supports required
- 2 thin wall
- ^a Fillet radius.

- b) New shape for LBM process
- t thickness
- *l* length

SFS-EN ISO/ASTM 52911-1:2019:en Examples

Gear wheel design example

- 25% mass reduction and integrated cooling system
- a) Reference gear (FZG type PT-C)

b) Lightweight design including functional integration of conformal cooling system resulting in a mass reduction by 25 %, produced by PBF-LB/M

SFS-EN ISO/ASTM 52911-1:2019:en Examples

Hydraulic manifold example

- Ca. 70 % reduction of pressure loss
- Weight reduction from 20 kg to 1 kg

a) Reference hydraulic manifold

f Oulu

Source: SFS-EN ISO/ASTM 52911-1:2019 (provided by TNO — The Netherlands Organisation for applied scientific research)

FMT

Design for metal AM

FMT

\forall

FMT

From general to details

Many functions in one part

- Body structure
- Connecting
 structures
- Cooling
- Lubrication
- Heat insulation

Vibration damping

- Heat exchanger
- RF features
- Mixer
- Nozzle
- etc

Assembly into a single part

- Assembly work reduction
- Simplification of functions
- Weight reduction •

Function
 optimisation

- Optimisation and minimisation of interfaces
- Complex internal structures
- etc
- Look at the product and its functions as a whole
- Try to combine functions into a single part
- Try to compact the assembly or sub-assembly into a single part

Examining known challenges and problems

Technical challenges

- Durability problems•
- Manufacturing problems
- Material problems •
- **Problems related** •
- to the small size of the production series **Customers'** technical wishes
- and requirements

- **Commercial or administrative challenges**
- Part manufacturing costs
- Assembly costs
- Time or timing

problems

 Problems related to product management

- Examining whether the use of AM methods could have a positive impact on
- On the other hand, looking at the supply chain of the product/parts and considering whether the use of AM methods could bring added value. University of Oul

Part design – "Pre-design" phase

- Technical requirements
- Forces, interfaces, operational requirements, etc.
- Economical realities and sustainability considerations
- Dimensions \rightarrow metal AM method
- Materials selection \rightarrow metal AM method
- Brainstorming
- Preliminary solutions

\rightarrow Preliminary solutions and appropriate AM methods

ሮማ

Part design – **Metal AM Method Capability**

 Part requirements vs. AM method possibilities and limitations

Feature

- Max. part dimensions
- Geometrical accuracy
- Surface roughness
 Ra 5-18 um
- Min. wall thickness 0.2 mm
- Min. hole diameter 0.4 mm
- Maximum length-toheight ratio
- Overhang angle/dist, 30...45 / 2 mm
- Minimum feature size ~ 0.2 mm

- **PBF-LB/M**
- 280x280x360
- 0.1 mm

- 1:8

DED-LB- Metal bowder

- 1000x1000x1000
- 0.5 mm
- Ra 15-60 um
- 3 mm
 - 10 mm
 - ??
 - 45 **
 - 2...5 mm**

WAAM

- 1200x1200x1200
- 1 mm
- Ra 40-200+ um
- 6 mm
- 30 mm
- ??
- 45 **
- 5...10 mm **

Notice: All values are machine and material depend and can vary widely between equipment from different manufacturers. ** PBF-LB/M – 3 axis \leftrightarrow DED – 3 or 5 axis mechanics

Part design – Geometry optimization

- For
 - Optimal function
 - Weight optimization
 - Manufacturing quality and costs
 - Minimizing post-processing needs
- Topology optimization FEM based manual geometry optimization - Generative design
- Many times also heat flow, flow path, electrical or RF/antenna geometry optimisation

Design for DED

 SFS-EN ISO/ASTM 52910:2019 Additive manufacturing. Design. Requirements, guidelines and recommendations (ISO/ASTM 52910:2018) *is good starting point!*

Design for DED (DED-LB and WAAM)

- Usually DED + machining
- Clamping of the workpiece for machining to be taken into account
- With the right fixing solution, intermediate machining is also possible
- 5 axis mechanics:
 - Build overhanging structures without supports
 - Hollow fully enclosed structures possible

Design for DED

- Use rounded corners

►I FMT

Source: Helen Lockett, Jialuo Ding, Stewart Williams, Filomeno Martina+, **Design for Wire + Arc Additive Manufacture: Design Rules and Build Orientation Selection,** Journal of Engineering Design, Volume 28, 2017 - Issue 7-9, https://doi.org/10.1080/09544828.2017.1365826

DED - Use substrate as part of the part!

(a) Central Web on Plane of Symmetry

(b) Planar Outer Wall

(c) Planar Internal Wall (d) Plane of Symmetry or Partial Symmetry (Not Aligned with a Wall)

Source: Helen Lockett, Jialuo Ding, Stewart Williams, Filomeno Martina+, **Design for Wire + Arc Additive Manufacture: Design Rules and Build Orientation Selection,** Journal of Engineering Design, Volume 28, 2017 - Issue 7-9, https://doi.org/10.1080/09544828.2017.1365826

DED - Cross Structures

Peak

FMT

Source; J. Mehnen, J. Ding, H. Lockett, P. Kazanas, **Design for Wire and Arc Additive** Layer Manufacture, *CIRP Design Conference 2010*

- DED-LB-Metal powder:
- Laser cladding materials
- Corrosion resistant, High stength, Abrasion resistant, Heat resistan etc.
- Prices from 60 €/kg
- WAAM:
- All MIG/MAG low slag welding consumables
- Also mild steel! Price ca 2 €/kg
- Stainless steel AISI136L ca. 6 €/kg

Conclusions

FMT

EN ISO/ASTM 52910:2019

Additive manufacturing. Design. Requirements, guidelines and recommendations (ISO/ASTM 52910:2018) It's worth checking out!

EN ISO/ASTM 52911-1:2019:en

Additive manufacturing. Design. Part 1: Laser-based powder bed fusion of metals (ISO/ASTM 52911-1:2019) **PBF-LB/M - lot of design guidelines**

DED – methods (WAAM and DED-LB)

- Coarser than the PBF method
- Possibilities of 5 axis mechanics
- Substrate as part of the part
- Reasonable price of materials

Contact Information: Development Manager Kari Mäntyjärvi +358 40 084 3050 kari.mantyjarvi@oulu.fi

University of Oulu